3=-16t^2+1730

Simple and best practice solution for 3=-16t^2+1730 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3=-16t^2+1730 equation:



3=-16t^2+1730
We move all terms to the left:
3-(-16t^2+1730)=0
We get rid of parentheses
16t^2-1730+3=0
We add all the numbers together, and all the variables
16t^2-1727=0
a = 16; b = 0; c = -1727;
Δ = b2-4ac
Δ = 02-4·16·(-1727)
Δ = 110528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{110528}=\sqrt{64*1727}=\sqrt{64}*\sqrt{1727}=8\sqrt{1727}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{1727}}{2*16}=\frac{0-8\sqrt{1727}}{32} =-\frac{8\sqrt{1727}}{32} =-\frac{\sqrt{1727}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{1727}}{2*16}=\frac{0+8\sqrt{1727}}{32} =\frac{8\sqrt{1727}}{32} =\frac{\sqrt{1727}}{4} $

See similar equations:

| x,2x,x,8=48 | | -13x-12=-90 | | 1/3x^2-1/12x-1/4=0 | | 3p=-39 | | (16r+2)/5=10 | | -8x+12=-140 | | X^3-144y=0 | | 12-(w^2+2w+8)=300 | | 7(v+9)=-4v-25 | | −1+3(−4n+6)=−2(−7n−5)−3 | | 12-(3^2+2w+8)=300 | | 80=2(8a) | | 7x-5+8x-3=9x+6x+8 | | -8y-17=3(y+9) | | p-4-8p=-11 | | 4=(x-7)/0.05 | | 13x−1=9x−13 | | 13x−1=13x−1=9x−13 | | c+(c/2)=12 | | 12z-9=10z-15 | | 3(x+2)(x+8)^2=0 | | 1/2(x+102)=60 | | 24b2+96b=0 | | -15x-17=-197 | | 8x+15=175 | | 2x+10=-5x-67 | | 2x=10=-5x-67 | | -5+3x=2x+4+-15 | | (3b+4)/5=-4 | | 2(u-2)+7u=-22 | | (6m+7)(9m+7)=0 | | 8+9(+n)n=5 |

Equations solver categories